首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3535篇
  免费   154篇
  国内免费   14篇
化学   2709篇
晶体学   18篇
力学   145篇
数学   374篇
物理学   457篇
  2023年   30篇
  2022年   25篇
  2021年   60篇
  2020年   67篇
  2019年   68篇
  2018年   46篇
  2017年   40篇
  2016年   114篇
  2015年   108篇
  2014年   139篇
  2013年   183篇
  2012年   247篇
  2011年   384篇
  2010年   179篇
  2009年   190篇
  2008年   264篇
  2007年   255篇
  2006年   252篇
  2005年   249篇
  2004年   221篇
  2003年   172篇
  2002年   118篇
  2001年   61篇
  2000年   28篇
  1999年   40篇
  1998年   23篇
  1997年   24篇
  1996年   23篇
  1995年   7篇
  1994年   9篇
  1993年   8篇
  1992年   15篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   8篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1971年   2篇
排序方式: 共有3703条查询结果,搜索用时 859 毫秒
91.
The last decade has revealed new roles for Cullin-RING ubiquitin ligases (CRLs) in a myriad of cellular processes, including cell cycle progression. In addition to CRL1, also named SCF (SKP1-Cullin 1-F box protein), which has been known for decades as an important factor in the regulation of the cell cycle, it is now evident that all eight CRL family members are involved in the intricate cellular pathways driving cell cycle progression. In this review, we summarize the structure of CRLs and their functions in driving the cell cycle. We focus on how CRLs target key proteins for degradation or otherwise alter their functions to control the progression over the various cell cycle phases leading to cell division. We also summarize how CRLs and the anaphase-promoting complex/cyclosome (APC/C) ligase complex closely cooperate to govern efficient cell cycle progression.Subject terms: Drug development, Targeted therapies, Origin firing, Chromatin remodelling, Post-translational modifications  相似文献   
92.
The synthesis on solid phase of a new derivative of the anticoagulant protein hirudin is described (see Scheme and Fig.1, I ). The henicosapeptide is a bivalent conjugate of the C-terminus of hirudin and of the active-site-binding tetrapeptide D -Phe-Pro-Arg-Pro linked via a tetraglycine spacer. The peptide, for which the name hirufos was coined, incorporates a stable phosphono derivative of L -phenylalanine which, combined with the other structural modifications, leads to a potent anticoagulant agent. Synthesis was readily achieved by the (9H-fluoren-9-yl)-methoxycarbonyl (Fmoc) strategy followed by acidolytic cleavage from the resin and deprotection, including the liberation of the crucial phosphonic group on L -phenylalanine.  相似文献   
93.
The stereochemistry of reductive and non reductive Heck cyclisations of 4-substituted-1.4-dihydropyridines is reexamined. The both reactions occur mainly via an anti (from the C4 substituent) 5-exo process without any epimerisation of the C4-H.  相似文献   
94.
Iron-catalyzed homo-coupling of simple and functionalized arylmagnesium reagents is described. The reaction is highly chemoselective (CN, COOEt and NO(2) groups are tolerated). The procedure was used to perform intramolecular couplings. This cyclization reaction is the key step of the total synthesis of the N-methylcrinasiadine.  相似文献   
95.
A series of new tetradentate ligands containing two bipyridine groups or two pyridine moieties carrying amine substituents has been synthesised either from 5'- and 6'-substituted chiral bipyridines, or from chiral pyridine derivatives. These precursors have been prepared from (-)-alpha-pinene or (-)-myrtenal, respectively. The structures of three tetradentate-, and of five chiral bipyridine ligands have been determined by X-ray diffraction.  相似文献   
96.
The use of 4.2 nm gold nanoparticles wrapped in an adsorbates shell and embedded in a TiO2 metal oxide matrix gives the opportunity to investigate ultrafast electron-electron scattering dynamics in combination with electronic surface phenomena via the surface plasmon lifetimes. These gold nanoparticles (NPs) exhibit a large nonclassical broadening of the surface plasmon band, which is attributed to a chemical interface damping. The acceleration of the loss of surface plasmon phase coherence indicates that the energy and the momentum of the collective electrons can be dissipated into electronic affinity levels of adsorbates. As a result of the preparation process, gold NPs are wrapped in a shell of sulfate compounds that gives rise to a large density of interfacial molecules confined between Au and TiO2, as revealed by Fourier-transform-infrared spectroscopy. A detailed analysis of the transient absorption spectra obtained by broadband femtosecond transient absorption spectroscopy allows separating electron-electron and electron-phonon interaction. Internal thermalization times (electron-electron scattering) are determined by probing the decay of nascent nonthermal electrons (NNEs) and the build-up of the Fermi-Dirac electron distribution, giving time constants of 540 to 760 fs at 0.42 and 0.34 eV from the Fermi level, respectively. Comparison with literature data reveals that lifetimes of NNEs measured for these small gold NPs are more than four times longer than for silver NPs with similar sizes. The surprisingly long internal thermalization time is attributed to an additional decay mechanism (besides the classical e-e scattering) for the energy loss of NNEs, identified as the ultrafast chemical interface scattering process. NNEs experience an inelastic resonant scattering process into unoccupied electronic states of adsorbates, that directly act as an efficient heat bath, via the excitation of molecular vibrational modes. The two-temperature model is no longer valid for this system because of (i) the temporal overlap between the internal and external thermalization process is very important; (ii) a part of the photonic energy is directly transferred toward the adsorbates (not among "cold" conduction band electrons). These findings have important consequence for femtochemistry on metal surfaces since they show that reactions can be initiated by nascent nonthermal electrons (as photoexcited, out of a Fermi-Dirac distribution) besides of the hot electron gas.  相似文献   
97.
Galactose oxidase (GO) is an enzyme that catalyzes two-electron oxidations. Its active site contains a copper atom coordinated to a tyrosyl radical, the biogenesis of which requires copper and dioxygen. We have recently studied the properties of electrochemically generated mononuclear Cu(II)-phenoxyl radical systems as model compounds of GO. We present here the solution chemistry of these ligands under various copper and dioxygen statuses: N(3)O ligands first chelate Cu(II), leading, in the presence of base, to [Cu(II)(ligand)(CH(3)CN)](+) complexes (ortho-tert-butylated ligands) or [(Cu(II))(2)(ligand)(2)](2+) complexes (ortho-methoxylated ligands). Excess copper(II) then oxidizes the complex to the corresponding mononuclear Cu(II)-phenoxyl radical species. N(2)O(2) tripodal ligands, in the presence of copper(II), afford directly a copper(II)-phenoxyl radical species. Addition of more than two molar equivalents of copper(II) affords a Cu(II)-bis(phenoxyl) diradical species. The donor set of the ligand directs the reaction towards comproportionation for ligands possessing an N(3)O donor set, while disproportionation is observed for ligands possessing an N(2)O(2) donor set. These results are discussed in the light of recent results concerning the self-processing of GO. A path involving copper(II) disproportionation is proposed for oxidation of the cross-linked tyrosinate of GO, supporting the fact that both copper(I) and copper(II) activate the enzyme.  相似文献   
98.
The affinity of geldanamycin (GA) for binding to heat shock protein 90 (HSP90) is 50- to 100-fold weaker than is the affinity of the structurally distinct natural product radicicol. X-ray crystallography shows that although radicicol maintains its free conformation when bound to HSP90, the conformation of GA is dramatically altered from an extended conformation with a trans amide bond to a kinked shape in which the amide group in the ansa ring has the cis configuration. We have performed ab initio quantum chemical calculations to demonstrate that the trans-cis isomeriztion of GA in solution is both kinetically and thermodynamically unfavorable. Thus, we propose that HSP90 catalyzes the isomerization of GA. We identify Ser113, a conserved residue outside the ATP binding pocket, as essential for the isomerization of GA. In support of this model, we show that radicicol binds equally well to both wild-type HSP90 and the Ser113 mutant, whereas the binding of GA to the Ser113 mutant is decreased significantly from its binding to wild-type HSP90. Based on this finding, a mechanism of keto-enol tautomerization of GA catalyzed by HSP90 is proposed. The added requirement of isomerization prior to tight binding may explain the enhanced binding affinity of GA for HSP90 in a cell extract versus in a purified form.  相似文献   
99.
Serotonin or 5-hydroxytryptamine (5-HT) is a major neurotransmitter in the central nervous system. In this work, a method for analyzing 5-HT in brain microdialysis samples using a commercially available capillary electrophoresis (CE) system has been developed. A pH-mediated in-capillary preconcentration of samples was performed, and after separation by capillary zone electrophoresis, native fluorescence of 5-HT was detected by a 266 nm solid-state laser. The separation conditions for the analysis of 5-HT in standard solutions and microdialysates have been optimized, and this method has been validated on both pharmacological and analytical bases. Separation of 5-HT was performed using a 80 mmol/L citrate buffer, pH 2.5, containing 20 mmol/L hydroxypropyl-beta-cyclodextrin (HP-beta-CD) and +30 kV voltage. The detection limit was 2.5 x 10(-10) mol/L. This method allows the in vivo brain monitoring of 5-HT using a simple, accurate CE measurement in underivatized microdialysis samples.  相似文献   
100.
A series of new alkoxy-amino-bis(phenols) (H2L 1-6) has been synthesized by Mannich condensations of substituted phenols, formaldehyde, and amino ethers or diamines. The coordination properties of these dianionic ligands towards yttrium, lanthanum, and neodymium have been studied. The resulting Group 3 metal complexes have been used as initiators for the ring-opening polymerization of rac-lactide to provide poly(lactic acid)s (PLAs). The polymerizations are living, as evidenced by the narrow polydispersities of the isolated polymers, together with the linear natures of number average molecular weight versus conversion plots and monomer-to-catalyst ratios. Complex [Y(L6){N(SiHMe2)2}(THF)] (17) polymerized rac-lactide to heterotactic PLA (Pr = 0.90 at 20 degrees C) and meso-lactide to syndiotactic PLA (Pr = 0.75 at 20 degrees C). The in situ formation of [Y(L6)(OiPr)(THF)] (18) from 17 and 2-propanol resulted in narrower molecular weight distributions (PDI = 1.06). With complex 18, highly heterotactic PLAs with narrow molecular weight distributions were obtained with high activities and productivities at room temperature. The natures of the ligand substituents were shown to have a significant influence on the degree of control of the polymerizations, and in particular on the tacticity of the polymer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号